Sitemap
A list of all the posts and pages found on the site. For you robots out there, there is an XML version available for digesting as well.
Pages
Posts
Future Blog Post
Published:
This post will show up by default. To disable scheduling of future posts, edit config.yml
and set future: false
.
Blog Post number 4
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Blog Post number 3
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Blog Post number 2
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Blog Post number 1
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
publications
Paper Title Number 2
Published in Journal 1, 2010
This paper is about the number 2. The number 3 is left for future work.
Recommended citation: Your Name, You. (2010). "Paper Title Number 2." Journal 1. 1(2).
Download Paper | Download Slides
Efficient Computation of Confidence Sets Using Classification on Equidistributed Grids
Published in arXiv, 2024
Recommended citation:
Download Paper | Download Slides | Download Bibtex
Paper Title Number 4
Published in GitHub Journal of Bugs, 2024
This paper is about fixing template issue #693.
Recommended citation: Your Name, You. (2024). "Paper Title Number 3." GitHub Journal of Bugs. 1(3).
Download Paper
Efficient Computation of Confidence Sets Using Classification on Equidistributed Grids
Published in , 1900
Abstract: Economic models produce moment inequalities, which can be used to form tests of the true parameters. Confidence sets (CS) of the true parameters are derived by inverting these tests. However, they often lack analytical expressions, necessitating a grid search to obtain the CS numerically by retaining the grid points that pass the test. When the statistic is not asymptotically pivotal, constructing the critical value for each grid point in the parameter space adds to the computational burden. In this paper, we convert the computational issue into a classification problem by using a support vector machine (SVM) classifier. Its decision function provides a faster and more systematic way of dividing the parameter space into two regions: inside vs. outside of the confidence set. We label those points in the CS as 1 and those outside as -1. Researchers can train the SVM classifier on a grid of manageable size and use it to determine whether points on denser grids are in the CS or not. We establish certain conditions for the grid so that there is a tuning that allows us to asymptotically reproduce the test in the CS. This means that in the limit, a point is classified as belonging to the confidence set if and only if it is labeled as 1 by the SVM.
teaching
Teaching experience 1
Undergraduate course, University 1, Department, 2014
This is a description of a teaching experience. You can use markdown like any other post.
Teaching experience 2
Workshop, University 1, Department, 2015
This is a description of a teaching experience. You can use markdown like any other post.